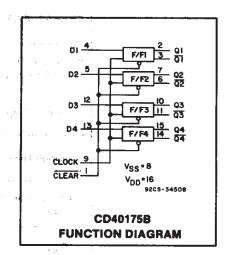
SCHS105C - Revised October 2003

# CD40175B Types

# CMOS Quad 'D'-Type Flip-Flop

# High-Voltage Types (20-Volt Rating)

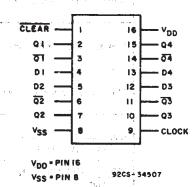
#### **Features**


- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full packagetemperature range; 100 nA at 18 V and 25° C
- Noise margin (full packagetemperature range) =
  - 1 V at VDD = 5 V 2 V at VDD = 10 V 2.5 V at VDD = 15 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

SAME BUILDING

- Output compatible with two HTL loads, two low power TTL loads, or one low power Schottky TTL load
- Functional equivalent to TTL 74175
- Standardized symmetrical output characteristics

#### **Applications:**


- Shift registers
- Buffer/storage registers
- Pattern generators



CD40175B consists of four identical D-type flipflops. Each flip-flop has an independent DATA D input and complementary Q and Q outputs. The CLOCK and CLEAR inputs are common to all flip-flops. Data are transferred to the Q outputs on the positive-going transition of the clock pulse. All four flip-flops are simultaneously reset by a low level on the CLEAR input.

These devices can function as shift register elements or as T-type flip-flops for toggle and counter applications.

The CD40175B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).



**TERMINAL ASSIGNMENT** 

| MAXIMUM RATINGS, Absolute-Maximum Values:                                                                     |             | 2.5 ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section 1             |                                |
|---------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|
| DC SUPPLY-VOLTAGE RANGE, (VDD)                                                                                | 1004        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                |
| MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD) Voltages referenced to VSS Terminal) |             | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 0.5V to +20V                   |
| INPUT VOLTAGE RANGE, ALL INPUTS                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -0.5V to V <sub>DD</sub> +0.5V |
| DC INPUT CURRENT, ANY ONE INPUT                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                |
| POWER DISSIPATION PER PACKAGE (PD):                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                |
| For T <sub>A</sub> = -55°C to +100°C                                                                          |             | ****************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 500mW                          |
| For T <sub>A</sub> = +100°C to +125°C                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Derate Linearity at 1 | 2mW/°C to 200mW                |
| DEVICE DISSIPATION PER OUTPUT TRANSISTOR                                                                      | 3.041374    | in the same of the |                       | *                              |
| FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Pac                                                              | kage-Types) | :<br>- = #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 100mW                          |
| OPERATING-TEMPERATURE RANGE (TA)                                                                              |             | **************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57 - 1, 2 · ·         | 55°C to +125°C                 |
| STORAGE TEMPERATURE RANGE (Tatg)                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                |
|                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                |
| At distance $1/16 \pm 1/32$ inch $(1.59 \pm 0.79$ mm) from case for 1                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | +265°C                         |

# RECOMMENDED OPERATING CONDITIONS at TA = 25°C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

| QUADACTED:                                        | 14         | LIN  |          |       |     |
|---------------------------------------------------|------------|------|----------|-------|-----|
| CHARACTERISTIC                                    | Vod<br>(V) | MIN. | MAX.     | UNITS |     |
| Supply-Voltage Range (For TA = Full Package-Tempe |            | 3    | 18       | · v   |     |
|                                                   |            | 5    | 120      |       |     |
| Data Setup Time                                   | tsu        | 10   | 50       | _     | ns  |
|                                                   | e e e e    | 15   | 40       | _     |     |
|                                                   | ,          | 5    | 80       |       |     |
| Data Hold Time                                    | tH         | 10   | 40       | _     | ns  |
|                                                   |            | 15   | 30       | _     |     |
|                                                   |            | - 5  | _        | 2     | 1.5 |
| Clock Input Frequency                             | fCL        | 10   | dc       | 5     | MHz |
| <u> </u>                                          |            | 15   | _        | 6.5   |     |
|                                                   |            | 5    | -        | 15    |     |
| Clock Input Rise or Fall Time                     | troL, troL | 10   | · —      | 15    | μs  |
|                                                   |            | 15   | <u> </u> | 15    |     |
|                                                   |            | 5    | 250      |       |     |
| Clock Input Pulse Width                           | tw., twn   | 10   | 100      | -     | ns  |
|                                                   |            | 15   | 75       | _     |     |
|                                                   |            | 5    | 200      | -     |     |
| Clear Pulse Width                                 | tWL        | 10   | 80       | _     | ns  |
|                                                   |            | 15   | 60       | _     |     |
|                                                   |            | 5    | 250      | _     |     |
| Clear Removal Time                                | trem       | 10   | 100      | _     | ns  |
|                                                   |            | 15   | 80       | _     |     |

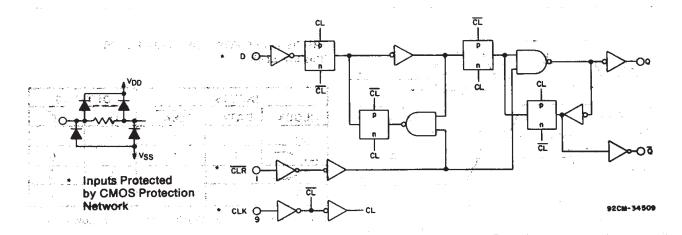



Fig. 1 - Logic diagram (1 of 4 flip-flops).

## STATIC ELECTRICAL CHARACTERISTICS

| CHARACTERISTIC CO |        |                | NDITIO     | NS         | LIMITS AT INDICATED TEMPERATURES (°C) |       |       |           |       |       |      |    |
|-------------------|--------|----------------|------------|------------|---------------------------------------|-------|-------|-----------|-------|-------|------|----|
|                   |        | V <sub>0</sub> | 3.5        |            |                                       |       |       |           |       | +25   |      |    |
|                   |        | (V)            | VIN<br>(V) | VDD<br>(V) | -55                                   | -40   | +85   | +125      | Min.  | Тур.  | Max. |    |
| Quiescent         |        |                | 0, 5       | 5          | 1                                     | 1     | 30    | 30        |       | 0.02  | 1    |    |
| Device            |        | _              | 0, 10      | 10         | 2                                     | 2     | 60    | 60        | _     | 0.02  | 2    | 1. |
| Current           |        | _              | 0, 15      | 15         | 4                                     | 4     | 120   | 120       | _     | 0.02  | 4    | μΑ |
| Max.              | DD     | _              | 0, 20      | 20         | 20                                    | 20    | 600   | 600       | _     | 0.04  | 20   | 1  |
| Output Low        |        | 0.4            | 0, 5       | 5          | 0.64                                  | 0.61  | 0.42  | 0.36      | 0.51  | 1     | _    |    |
| (Sink) Current    |        | 0.5            | 0, 10      | 10         | 1.6                                   | 1.5   | 1.1   | 0.9       | 1.3   | 2.6   | _    |    |
| Min.              | IOL    | 1.5            | 0, 15      | 15         | 4.2                                   | 4     | 2.8   | 2.4       | 3.4   | 6.8   | _    | 1  |
| Output High       |        | 4.6            | 0, 5       | 5          | -0.64                                 | -0.61 | -0.42 | -0.36     | -0.51 | -1    |      | mA |
| (Source)          |        | 2.5            | 0, 5       | 5          | -2                                    | -1.8  | -1.3  | -1.15     | -1.6  | -3.2  | T-   | 1  |
| Current           |        | 9.5            | 0, 10      | 10         | -1.6                                  | -1.5  | -1.1  | -0.9      | -1.3  | -2.6  | _    | 1  |
| Min.              | Юн     | 13.5           | 0, 15      | 15         | -4.2                                  | -4    | -2.8  | -2.4      | -3.4  | -6.8  | _    | 1  |
| Output Voltage:   |        | -              | 0, 5       | 5          |                                       | 0.    | 05    |           |       | 0     | 0.05 |    |
| Low-Level         |        | _              | 0, 10      | 10         |                                       | 0.    | 05    |           |       | 0     | 0.05 | 1  |
| Max.              | VOL    | -,             | 0, 15      | 15         |                                       | 0.    | 05    |           | _     | 0     | 0.05 | 1  |
| Output Voltage:   |        | _              | 0, 5       | 5          |                                       | 4.    | 95    |           | 4.95  | 5     | _    | v  |
| High-Level        |        | _              | 0, 10      | 10         |                                       | 9.    | 95    |           | 9.95  | 10    | -    | 1  |
| Min.              | Vон    |                | 0, 15      | 15         |                                       | 14    | .95   | · · · · · | 14.95 | 15    | _    | 1  |
| Input Low         |        | 0.5,4.5        | _          | 5          |                                       | 1     | .5    |           | _     | _     | 1.5  |    |
| Voltage           |        | 1, 9           | _          | 10         |                                       |       | 3     |           | _     | l –   | 3    | 1  |
| Max.              | VIL    | 1.5,13.5       | _          | 15         |                                       |       | 4     |           | -     | 1 -   | 4    | 1  |
| Input High        |        | 0.5,4.5        |            | 5          | 3.5                                   |       |       | 3.5       | _     | _     | V    |    |
| Voltage           |        | 1, 9           | <u> </u>   | 10         | 7                                     |       |       |           | 7     | _     |      |    |
| Min.              | Vін    | 1.5,13.5       | . —        | 15         |                                       | 1     | ,1 ,  |           | 11.   | _     | . —  | 1  |
| Input Current Max | c. lin | _              | 0, 18      | 18         | ±0.1                                  | ±0.1  | ±1    | ±1        | _     | ±10-5 | ±0.1 | μΑ |

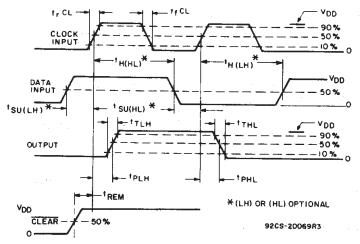



Fig. 2 - Definition of setup, hold, propagation delay, and removal times.

# TRUTH TABLE FOR 1 OF 4 FLIP-FLOPS (Positive Logic)

|       | INPUTS | OUTPUTS |   |           |  |  |
|-------|--------|---------|---|-----------|--|--|
| CLOCK | DATA   | CLEAR   | Q | a         |  |  |
| \     | 0      | 1       | 0 | 1         |  |  |
| \     | 1      | 1       | 1 | 0         |  |  |
|       | Х      | 1,,     | Q | <u> ব</u> |  |  |
| X     | ×      | 0 10 12 | 0 | 1         |  |  |

1=High Level X=Don't Care 0=Low Level

## DYNAMIC ELECTRICAL CHARACTERISTICS at TA = 25°C; input tr, tr = 20 ns, CL = 50 pF, RL = 200 k $\Omega$

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              | LIMITS |      |        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|--------|------|--------|--|--|
| CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEST<br>CONDITIONS<br>VDD (V) | MIN.         | TYP.   | MAX. | UNIT   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             | _            | 100    | 200  |        |  |  |
| Transition Time tTHL, tTLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                            | _            | 50     | 100  |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | _            | 40     | 80   |        |  |  |
| Propagation Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                             | - <u></u> 1. | 220    | 400  | 7      |  |  |
| Clock to Q Output tPHL, tPLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                            | <u> </u>     | 90     | 160  |        |  |  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                            | _            | 70     | 120  |        |  |  |
| Propagation Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                             | _            | 325    | 500  | 7      |  |  |
| CLEAR to Q Output tPHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                            |              | 130    | 200  | ns     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            |              | 100    | 150  |        |  |  |
| Minimum Pulse Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                             |              | 110    | 250  |        |  |  |
| Clock twh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                            | _            | 45     | 100  |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | _            | 35     | 75   |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             |              | 100    | 200  | 1      |  |  |
| Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                            |              | 40     | 80   | 1      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | _            | 30     | 60   |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             | 2            | 4.5    |      | 1      |  |  |
| Maximum Clock Frequency fcL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                            | 5            | 11     | l _  | MH     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | 6.5          | 14     | _    | '''' " |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             | 15           |        |      | +      |  |  |
| Maximum Clock Rise or Fall Time trCL, trCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                            | 15           | _      |      | μs     |  |  |
| With the Color will thin the Color with the Color with the Color with the Color will the Color with the Color w | 15                            | 15           |        | _    | "      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             |              | 60     | 120  | +      |  |  |
| Minimum Data Setup Time tsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                            | _            | 25     | 50   | 1      |  |  |
| minimum data detap rinie (od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                            |              | 20     | 40   |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             |              | 40     | 80   | -      |  |  |
| Minimum Data Hold Time tH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                            | _            | 20     | 40   | ns     |  |  |
| minimum pata noto nine (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                            | _            | 15     | 30   | 113    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             |              | 125    | 250  | ┨      |  |  |
| Minimum Clear Removal Time ‡ tREM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                            |              | 50     | 100  |        |  |  |
| Millian Creat Lethoval Line + (KEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                            |              | 40     | i    | -      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | <del></del>  | 40     | 80   | +      |  |  |
| Input Capacitance CIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                             |              | 5      | 7.5  | pF     |  |  |

## ‡ CLEAR signal must be high prior to positive-going transition of CLOCK pulse.

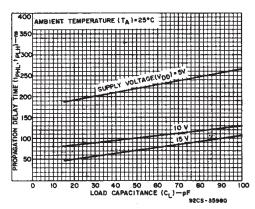



Fig. 3 - Typical propagation delay time (CLOCK to OUTPUT) as a function of load capacitance.

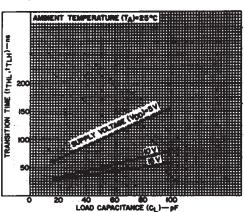



Fig. 4 - Typical transition time as a function of load capacitance.

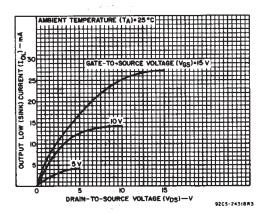



Fig. 5 – Typical output low (sink) current characteristics.

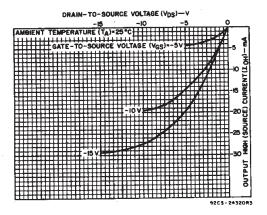



Fig. 7 – Typical output high (source) current characteristics.

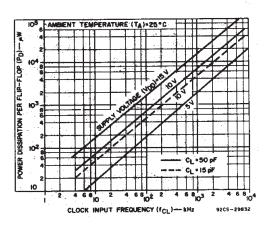



Fig. 9 – Typical dynamic power dissipation as a function of CLOCK frequency.

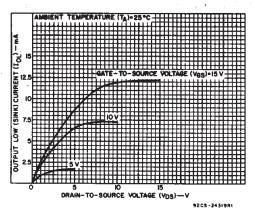



Fig. 6 - Minimum output low (sink) current characteristics.

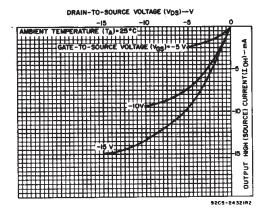



Fig. 8 - Minimum output high (source) current characteristics.

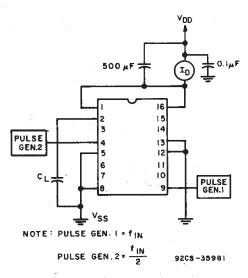
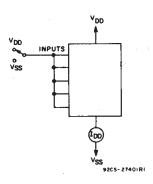




Fig. 10 - Dynamic power dissipation test circuit.



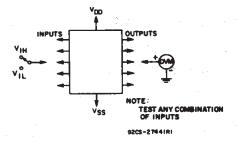



Fig. 11 - Quiescent device current test circuit.

Fig. 12 - Noise immunity test circuit.

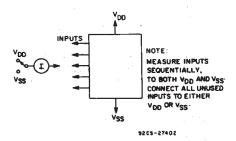
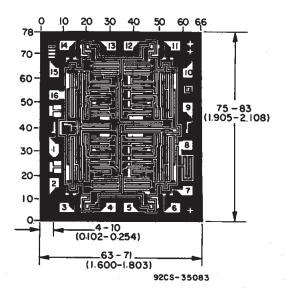




Fig. 13 - Input leakage current test circuit.



Dimensions and pad layout for CD40175BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10<sup>-3</sup> inch).





10-Jun-2014

#### **PACKAGING INFORMATION**

| Orderable Device | Status   | Package Type | _       | Pins | _    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking | Samples |
|------------------|----------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|----------------|---------|
|                  | (1)      |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                |              | (4/5)          |         |
| CD40175BE        | ACTIVE   | PDIP         | N       | 16   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | -55 to 125   | CD40175BE      | Samples |
| CD40175BEE4      | ACTIVE   | PDIP         | N       | 16   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type | -55 to 125   | CD40175BE      | Samples |
| CD40175BF3A      | ACTIVE   | CDIP         | J       | 16   | 1    | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | CD40175BF3A    | Samples |
| CD40175BM        | ACTIVE   | SOIC         | D       | 16   | 40   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CD40175BM      | Samples |
| CD40175BM96      | ACTIVE   | SOIC         | D       | 16   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CD40175BM      | Samples |
| CD40175BME4      | ACTIVE   | SOIC         | D       | 16   | 40   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CD40175BM      | Samples |
| CD40175BMT       | ACTIVE   | SOIC         | D       | 16   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CD40175BM      | Samples |
| CD40175BMTE4     | ACTIVE   | SOIC         | D       | 16   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CD40175BM      | Samples |
| CD40175BNSR      | ACTIVE   | SO           | NS      | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CD40175B       | Samples |
| CD40175BNSRE4    | ACTIVE   | so           | NS      | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CD40175B       | Samples |
| CD40175BPWR      | ACTIVE   | TSSOP        | PW      | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CM0175B        | Samples |
| CD40175BPWRG4    | ACTIVE   | TSSOP        | PW      | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | CM0175B        | Samples |
| CD40175BW        | OBSOLETI | E WAFERSALE  | YS      | 0    |      | TBD                        | Call TI          | Call TI            |              |                |         |

<sup>(1)</sup> The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

# PACKAGE OPTION ADDENDUM



10-Jun-2014

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

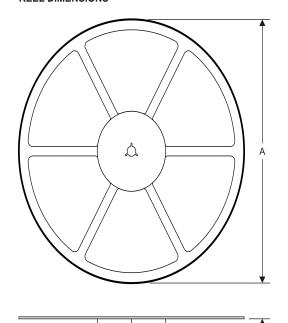
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF CD40175B, CD40175B-MIL:

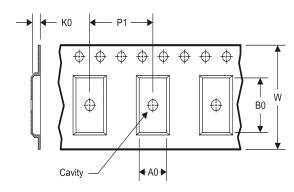
Catalog: CD40175B

Military: CD40175B-MIL

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

# PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

# TAPE AND REEL INFORMATION

### **REEL DIMENSIONS**



# TAPE DIMENSIONS



| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### TAPE AND REEL INFORMATION

#### \*All dimensions are nominal

| Device      | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CD40175BM96 | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD40175BNSR | SO              | NS                 | 16 | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| CD40175BPWR | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |

www.ti.com 14-Jul-2012



#### \*All dimensions are nominal

| Device      | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD40175BM96 | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD40175BNSR | SO           | NS              | 16   | 2000 | 367.0       | 367.0      | 38.0        |
| CD40175BPWR | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |

#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity