

# 5mm Standard T-1 3/4 Type Full Color With Common Cathode LED Technical Data Sheet

Part No.: 509RGBC2E-002

Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Page: 1 OF 10

Approved: Liu Checked: Pan Drawn: Zhang



## Features:

Uniform light output.

Low power consumption.

I.C. Compatible.

Long life-solid state reliability.

The product itself will remain within RoHS compliant Version.

## Descriptions:

The Hyper Red source color devices are made with AlGaInP on GaAs substrate Light Emitting Diode.

The Pure Green source color devices are made with InGaN on Sapphire substrate Light Emitting Diode.

The Blue source color devices are made with InGaN on Sapphire substrate Light Emitting Diode.

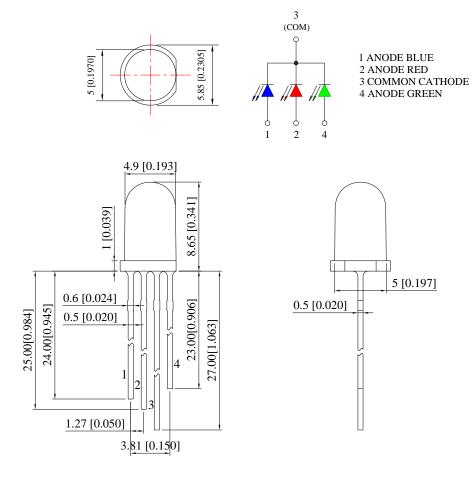
## Applications:

TV set.

Monitor.

Telephone.

Computer.


Circuit board, etc.

Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Page: 2 OF 10

Approved: Liu Checked: Pan Drawn: Zhang



# Package Dimension:



| Part No.      | Chip Material | Lens Color  | Source Color |
|---------------|---------------|-------------|--------------|
|               | AlGaInP       |             | Hyper Red    |
| 509RGBC2E-002 | InGaN         | Water Clear | Pure Green   |
|               | InGaN         |             | Blue         |

#### Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is  $\pm$  0.25mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.00mm (.039") max.
- 4. Specifications are subject to change without notice.

Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Page: 3 OF 10

Approved: Liu Checked: Pan Drawn: Zhang



# Absolute Maximum Ratings at Ta=25

| Parameters                                                   |            | Symbol | Max.              | Unit |  |
|--------------------------------------------------------------|------------|--------|-------------------|------|--|
|                                                              | Hyper Red  |        | 65                |      |  |
| Power Dissipation                                            | Pure Green | PD     | 95                | mW   |  |
|                                                              | Blue       |        | 95                |      |  |
| Peak Forward Current<br>(1/10 Duty Cycle, 0.1ms Pulse Width) |            | IFP    | 100               | mA   |  |
| Ultra Red Chip Forward Current                               |            | IF     | 25                | mA   |  |
| Pure Green Chip Forward Current                              |            | IF     | 25                | mA   |  |
| Blue Chip Continuous Forward Current                         |            | IF     | 25                | mA   |  |
| Reverse Voltage                                              |            | VR     | 5                 | V    |  |
| Operating Temperature Range                                  |            | Topr   | -40 to +85        |      |  |
| Storage Temperature Range                                    |            | Tstg   | -40 to +100       |      |  |
| Lead Soldering Temperature<br>[4mm (.157") From Body]        |            | Tsld   | 260 for 5 Seconds |      |  |

Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Page: 4 OF 10

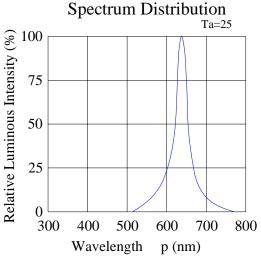
Approved: Liu Checked: Pan Drawn: Zhang



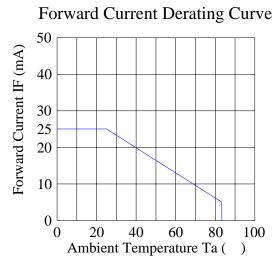
# Electrical Optical Characteristics at Ta=25

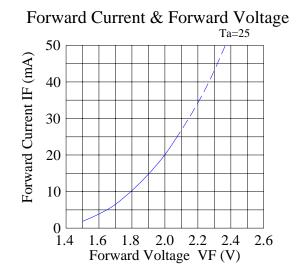
| Parameters                  | Symbol            | Emitting Color | Min. | Тур. | Max. | Unit | Test<br>Condition   |
|-----------------------------|-------------------|----------------|------|------|------|------|---------------------|
|                             | IV                | Hyper Red      | 1600 | 3200 |      |      |                     |
| Luminous Intensity *        |                   | Pure Green     | 2000 | 4000 |      | mcd  | IF=20mA<br>(Note 1) |
|                             |                   | Blue           | 1000 | 2000 |      |      |                     |
|                             |                   | Hyper Red      |      | 25   |      |      |                     |
| Viewing Angle *             | 2θ <sub>1/2</sub> | Pure Green     |      | 25   |      | Deg  | IF=20mA<br>(Note 2) |
|                             |                   | Blue           |      | 25   |      |      |                     |
|                             | λр                | Hyper Red      |      | 632  |      |      | IF=20mA             |
| Peak Emission<br>Wavelength |                   | Pure Green     |      | 520  |      | nm   |                     |
|                             |                   | Blue           |      | 468  |      |      |                     |
|                             | λd                | Hyper Red      |      | 624  |      |      | IF=20mA<br>(Note 3) |
| Dominant<br>Wavelength      |                   | Pure Green     |      | 525  |      | nm   |                     |
|                             |                   | Blue           |      | 470  |      |      |                     |
|                             | e VF              | Hyper Red      | 1.60 | 2.00 | 2.60 |      |                     |
| Forward Voltage             |                   | Pure Green     | 2.80 | 3.20 | 3.80 | V    | IF=20mA             |
|                             |                   | Blue           | 2.80 | 3.20 | 3.80 |      |                     |
| Reverse Current             | IR                | Hyper Red      |      |      | 10   |      |                     |
|                             |                   | Pure Green     |      |      | 10   | μΑ   | V <sub>R</sub> =5V  |
|                             |                   | Blue           |      |      | 10   |      |                     |

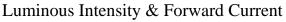
#### Notes:

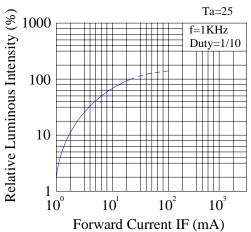

- 1. Luminous Intensity Measurement allowance is  $\pm$  10%.
- 2.  $\theta_{1/2}$  is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength ( $\lambda d$ ) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

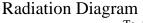
Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Page: 5 OF 10

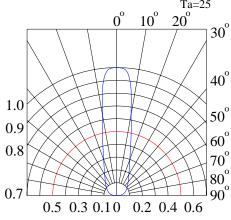

Approved: Liu Checked: Pan Drawn: Zhang





Typical Electrical / Optical Characteristics Curves (25 Ambient Temperature Unless Otherwise Noted) Hyper Red:





Luminous Intensity & Ambient Temperature Relative Luminous Intensity (%) 1000 100 10 -60 -40 -20 0 20 40 60 80 100 Ambient Temperature Ta ( )











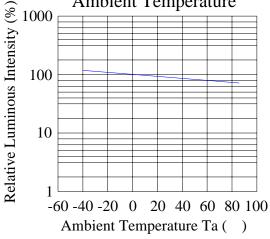



Spec No.: B508 X360 Rev No.: V.3 Approved: Liu Checked: Pan

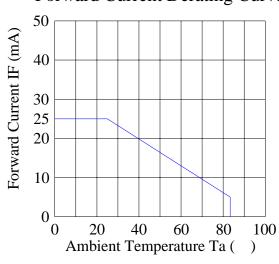
Lucky Light Electronics Co., Ltd.

Date: Jul./10/2008 Drawn: Zhang

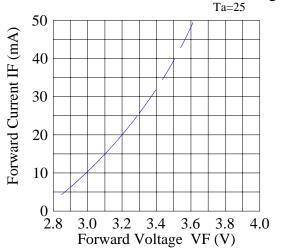
http://www.luckylightled.com


Page: 6 OF 10




#### Pure Green:

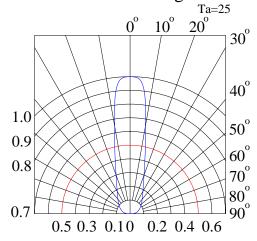
## Spectrum Distribution 100 Relative Luminous Intensity (%) 75 50 25 300 500 600 700 800 400 Wavelength \(\lambda\)p (nm)


## Luminous Intensity & **Ambient Temperature**



## Forward Current Derating Curve




### Forward Current & Forward Voltage



## Luminous Intensity & Forward Current

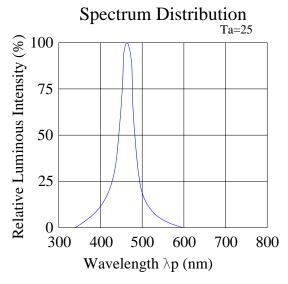


## **Radiation Diagram**

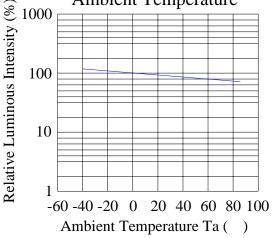


Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Approved: Liu Checked: Pan

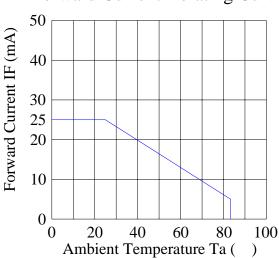
Lucky Light Electronics Co., Ltd.


Drawn: Zhang

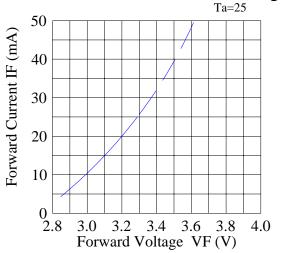
http://www.luckylightled.com


Page: 7 OF 10

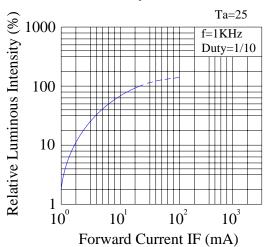



#### Blue:

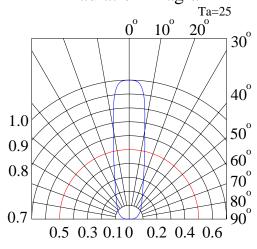



## Luminous Intensity & **Ambient Temperature** 1000




## Forward Current Derating Curve




## Forward Current & Forward Voltage



## Luminous Intensity & Forward Current



#### **Radiation Diagram**



Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Approved: Liu Checked: Pan Drawn: Zhang

Lucky Light Electronics Co., Ltd.

http://www.luckylightled.com

Page: 8 OF 10



# Reliability Test Items And Conditions:

The reliability of products shall be satisfied with items listed below:

Confidence level: 90%.

LTPD: 10%.

### 1) Test Items and Results:

| Test Item                                               | Standard<br>Test Method  | Test Conditions                                        | Note                       | Number of<br>Damaged |
|---------------------------------------------------------|--------------------------|--------------------------------------------------------|----------------------------|----------------------|
| Resistance to Soldering<br>Heat                         | JEITA ED-4701<br>300 302 | Tsld=260±5 , 10sec 3mm from the base of the epoxy bulb | 1 time                     | 0/100                |
| Solder ability                                          | JEITA ED-4701<br>300 303 | Tsld=235±5 , 5sec<br>(using flux)                      | 1time<br>over 95%          | 0/100                |
| Thermal Shock                                           | JEITA ED-4701<br>300 307 | 0 ~100 15sec, 15sec                                    | 100 cycles                 | 0/100                |
| Temperature Cycle                                       | JEITA ED-4701<br>100 105 | -40 ~25 ~100 ~25<br>30min,5min,30min,5min              | 100 cycles                 | 0/100                |
| Moisture Resistance<br>Cycle                            | JEITA ED-4701<br>200 203 | 25 ~65 ~-10 90%RH<br>24hrs/1cycle                      | 10 cycles                  | 0/100                |
| High Temperature<br>Storage                             | JEITA ED-4701<br>200 201 | Ta=100                                                 | 1000hrs                    | 0/100                |
| Terminal Strength<br>(Pull test)                        | JEITA ED-4701<br>400 401 | Load 10N (1kgf)<br>10±1sec                             | No<br>noticeable<br>damage | 0/100                |
| Terminal Strength (bending test)                        | JEITA ED-4701<br>400 401 | Load 5N (0.5kgf)<br>0°~90°~0° bend 2 times             | No<br>noticeable<br>damage | 0/100                |
| Temperature Humidity Storage                            | JEITA ED-4701<br>100 103 | Ta=60 , RH=90%                                         | 1000hrs                    | 0/100                |
| Low Temperature<br>Storage                              | JEITA ED-4701<br>200 202 | Ta=-40                                                 | 1000hrs                    | 0/100                |
| Steady State Operating<br>Life                          |                          | Ta=25 , IF=30mA                                        | 1000hrs                    | 0/100                |
| Steady State Operating<br>Life of High Humidity<br>Heat |                          | Ta=60 , RH=90%,<br>IF=30mA                             | 500hrs                     | 0/100                |
| Steady State Operating<br>Life of Low Temperature       |                          | Ta=-30 , IF=20mA                                       | 1000hrs                    | 0/100                |

#### 2) Criteria for Judging the Damage:

| Thom               | Thomas Commissions Took Conditions |                 | Criteria for | <sup>-</sup> Judgment |
|--------------------|------------------------------------|-----------------|--------------|-----------------------|
| Item               | Symbol                             | Test Conditions | Min          | Max                   |
| Forward Voltage    | VF                                 | IF=20mA         |              | F.V.*)×1.1            |
| Reverse Current    | IR                                 | VR=5V           |              | F.V.*)×2.0            |
| Luminous Intensity | IV                                 | IF=20mA         | F.V.*)×0.7   |                       |

\*) F.V.: First Value.

Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Page: 9 OF 10

Approved: Liu Checked: Pan Drawn: Zhang



# Please read the following notes before using the product:

#### 1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

#### 2. Storage

- 2.1 Do not open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package, the LEDs should be kept at 30 or less and 80%RH or less.
- 2.3 The LEDs should be used within a year.
- 2.4 After opening the package, the LEDs should be kept at 30 or less and 60%RH or less.
- 2.5 The LEDs should be used within 168 hours (7 days) after opening the package.

#### 3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260 for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

#### 4. Soldering

When soldering, for Lamp without stopper type and must be leave a minimum of 3mm clearance from the base of the lens to the soldering point.

To avoided the Epoxy climb up on lead frame and was impact to non-soldering problem, dipping the lens into the solder must be avoided.

Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.

Recommended soldering conditions:

| Soldering Iron                |                                            | Wave Soldering                                    |                                      |  |
|-------------------------------|--------------------------------------------|---------------------------------------------------|--------------------------------------|--|
| Temperature<br>Soldering Time | 300 Max.<br>3 sec. Max.<br>(one time only) | Pre-heat Pre-heat Time Solder Wave Soldering Time | 100 Max.<br>60 sec. Max.<br>260 Max. |  |

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.

#### 5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

#### 6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.

Spec No.: B508 X360 Rev No.: V.3 Date: Jul./10/2008 Page: 10 OF 10

Approved: Liu Checked: Pan Drawn: Zhang