LM1017 4-Bit Binary 7-Segment Decoder/Driver

General Description

The LM1017 is a monolithic IC which decodes 4-bit "binary plus one" coded input signals and supplies 1 1/2-digit TV channel display information. The outputs are designed to drive a 7-segment common carhode LED display with up to 25 mA depending on thermal dissipation requirements. Improvements in circuit design enable the device to operate from 5V to 12V supply. A brightness control facility is included.

Features

- A direct replacement for SN29764 but with 12V supply capability
- TTL compatible inputs with high input voltage immunity
- Channel displays are from 1 to 16
- Current-driven output stages for LEDs protect against excess thermal dissipation
- Continuously variable brightness control
- Low stand-by quiescent current supply consumption
- Suitable for NSN583 0.5 inch LED display
- Inputs are suitable for direct drive from MOS outputs

Connection Diagram

Order Number LM1017N See NS Package N16A

V_{SUPPLY} = 5V

For 12V supply, external resistors must be used between the output pin and segment to limit device dissipation.

77

Absolute Maximum Ratings

Supply Voltage, Pin 16 Input Voltage, Pins 2–5 Input Voltage, Pin 1 Operating Temperature Range 13.5V 30V 13.5V 0°C to +70°C Storage Temperature Range Junction Temperature -55°C to +150°C 150°C

Lead Temperature (Soldering, 10 seconds)

300°C

Electrical Characteristics V16 = 5V, TA = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Current per Segment Quiescent Current, Pin 16	Pin 1 = 2V		12	20	mA	
	Pin 1 = 5V		4		mA	
Input Logic Voltage	Pins 2-5					
H Signal		2			V	
L Signal				0.8	V	
Input Current, Pins 2-5	V2-5 = 2.4V			1	μΑ	
	V2-5 = 0V			-5	μΑ	
Input Current, Pin 1	I ₇₋₁₅ = -15 mA		-350		μΑ	
Output Current, Pins 7-15	V1 = 0V	-16	-22		mA	
	V1 = 2V		-12		mA	
	V1 = V16			-20	μΑ	
Minimum Saturation Between Output Terminals	I _{OUT} =20 mA		1.4		V	
7–15 and 16						
Package Thermal Resistance, $ heta$ JA				100	°C/W	

Note. To limit device temperature at supply voltages > 5V, the following condition must be maintained: 8 ($V_{SUPPLY} - V_{OUT}$) $I_{OUT} < \frac{150 - T_{A}}{\theta_{JA}}$ Eg. For 12V supply and 20 mA I_{OUT} into 2V LED, $T_{A} = 25^{\circ}C$: 8 ($12 - V_{O}$) $0.02 < \frac{125}{100}$

i.e., $V_{O} > 4.2V$. series output resistance = $\frac{2.2V}{20 \text{ mA}}$ = 110 Ω .

See application notes for use of common series resistance between LED cathodes and ground.

Truth Table

CHANNEL	INPUT					OUTPUT								
CHANNEL	D	С	В	Α	BR	а	b	C	d	e	f	g	h	i
1	L	L	L	L	L		ON	ON						
2	L	L	L	Н	L	ON	ON		ON	ON		ON		
3	L	L	Н	L	L	ON	ON	ON	ON			ON		
4	L	L	Н	Н	L		ON	ON			ON	ON		
5	L	Н	L	L	L	ON		ON	ON		ON	ON		
6	L	H	L	Н	L	ON		ON	ON	ON	ON	ON		
7	L	Н	H	L	L	ON	ON	ON						
8	L	Н	Н	Н	L.	ON	ON	ON	ON	ON	ON	ON		
9	Н	L	L	L	L	ON	ON	ON	ON		ON	ON		İ
10	Н	Ļ	L	Н	L	ON	ON	ON	ON	ON	ON		ON	ON
11	Н	L	Н	L	L		ON	ON					ON	ON
12	Н	L	Н	H	L	ON	ON		ON	ON		ON	ON	ON
13	н	Н	L	L	L	ON	ON	ON	ON			ON	ON	ON
14	н	Н	L	Н	L		ON	ON			ON	ON	ON	ON
15	Н	Н	Н	L	L	ON		ON	ON		ON	ON	ON	ON
16	Н	Н	Н	Н	L	ON		ON	ON	ON	ON	ON	ON	ОИ
OFF	Х	Х	Х	Х	Н									

Circuit Schematic (One Circuit Shown)

Output Characteristics

Typical Applications

When operating with a 12V supply line, it is necessary to limit the power dissipation in the IC by means of external resistance in series with the LED segments. (Max package dissipation at 70° C = 800 mW.)

A minimum voltage of 2.5V should be allowed across the output driver pins between supply and outputs. Allowing 1.4V for the LED segments, a simple economical solution using *only 1 resistor* can be proposed as follows:

Maximum no of ON segments = 8

For 20 mA/segment, maximum voltage allowed across R_L will be:

$$12 - 2.5 - 1.4 \cong 8V$$

$$\therefore$$
 R_L max = 8/8 x 0.02 $\stackrel{\triangle}{=}$ 47 Ω

For 15 mA/segment (max), R_L max = 56Ω .

Alternative methods of limiting PD at 12V supply.

With a series resistance between each output and segment, the recommended resistance per segment at 20 mA maximum will be:

$$(12 - 2.5 - 1.4)/0.02 \cong 390\Omega$$

If a zener is used, maximum zener voltage = 8V. (The zener can be common between LED display cathode and ground.)

