

12A TRIACS

BTA12-600/800/1200 TO-220 (Ins) Plastic Package

BTB12-600/800/1200 TO-220 (Non-Ins) Plastic Package

BTA12 / BTB12 series triacs, with high ability to withstand the shock loading of large current, provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrants products especially recommended for use on inductive load.

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	VALUE	UNIT
Storage junction temperature range		T _{stg}	-40 to 150	°C
Operating junction temperature range		T _j	-40 to 125	°C
Repetitive peak off-state voltage (T _j =25°C)		V _{DRM}	600/800/1200	V
Repetitive peak reverse voltage (T _j =25°C)		V _{RRM}	600/800/1200	V
Non repetitive surge peak Off-state voltage		V _{DSM}	V _{DRM} +100	V
Non repetitive peak reverse voltage		V _{RSM}	V _{RRM} +100	V
RMS on-state current	TO-220 (Ins) (T _C =90°C) TO-220 (Non-Ins) (T _C =105°C)	I _{T(RMS)}	12	Α
Non repetitive surge peak on-state current (full cycle, F=50Hz)		I _{TSM}	120	Α
I ² t value for fusing (t _p =10ms)		I ² t	72	A ² s
Critical rate of rise of on-state current (I _G =2×I _{GT})		dI/dt	50	A/µs
Peak gate current		I _{GM}	4	Α
Average gate power dissipation		$P_{G(AV)}$	1	W
Peak gate power		P_{GM}	5	W

ELECTRICAL CHARACTERISTICS (T_j =25°c unless otherwise specified)

3 Quadrants

PARAMETER	TEST CONDITIONS	SYMBOL	QUADRANT	VALUES				UNITS
				BW	CW	SW	TW	
Gate Trigger Current	$V_D = 12V R_L = 33\Omega$	l _{GT}	I - II - III	<50	<35	<10	<5	mA
Gate Trigger Voltage		V_{GT}	I - II - III	<1.3				V
Off-State Gate Voltage	$V_D = V_{DRM} T_j = 125^{\circ}C$ $R_L = 3.3K\Omega$	V_{GD}	I - II - III	>0.2			V	
Latching Current	I _G =1.2I _{GT}	IL	I - III	<70	<50	<25	<10	mA
			II	<80	<60	<30	<15	
Holding Current	I _T =100mA	I _H		<60	<40	<15	<10	mA
Critical Rate of Rise of Off-State Voltage	$V_D = 2/3V_{DRM}$ Gate Open $T_j = 125$ °C	dV/dt		>1000	>500	>40	>20	V/µs
	Without snubber T _j =125°C	(dV/dt)c		>12	>6.5	>5.0	>3.5	V/µs

4 Quadrants

PARAMETER	TEST CONDITIONS	SYMBOL	QUADRANT	VALU	IES	UNITS
				В	С	
Gate Trigger			I - II - III	<50	<25	mA
Current		I _{GT}	IV	<70	<50	ША
Gate Trigger Voltage	$V_D = 12V R_L = 33\Omega$	V _{GT}	ALL	<1.	V	
Off-State Gate Voltage	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ K Ω	V _{GD}	ALL	>0.2		V
Latching Current	I _G =1.2I _{GT}	IL	I - III - IV	<50	<40	mA
			II	<100	<80	
Holding Current	I _T =100mA	I _H		<50	<25	mA
Critical Rate of Rise of Off-State Voltage	$V_D=2/3V_{DRM}$ Gate Open $T_j=125^{\circ}C$	dV/dt		>400	>200	V/µs

STATIC CHARACTERISTICS

OTATIO OTTATA OTENOTICO						
PARAMETER	TEST CONDITIONS		SYMBOL	VALUE (MAX)	UNITS	
On-State Voltage	$I_{TM} = 17A t_p = 380 \mu s$	T _j =25°C	V_{TM}	1.55	V	
Off-State Leakage Current	$V_D = V_{DRM} V_R = V_{RRM}$	T _j =25°C	I _{DRM}	5	μΑ	
		T _j =125°C	I _{RRM}	1	mA	

THERMAL RESISTANCES

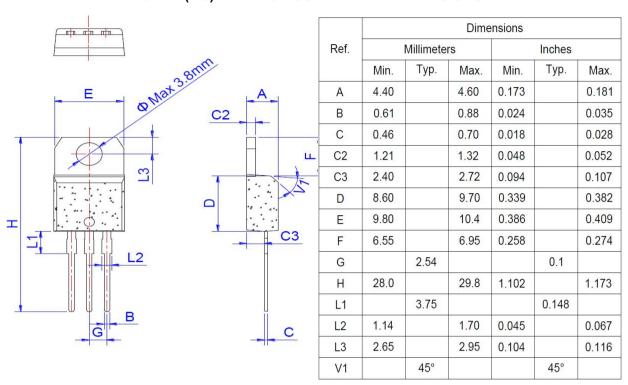
PARAMETER		SYMBOL	VALUE (MAX)	UNITS
Maximum Thermal	TO-220 (Ins)		2.3	
Resistance Junction to case	TO-220 (Non-Ins)	$R_{th(j-c)}$	1.4	°C/W

ORDERING INFORMATION

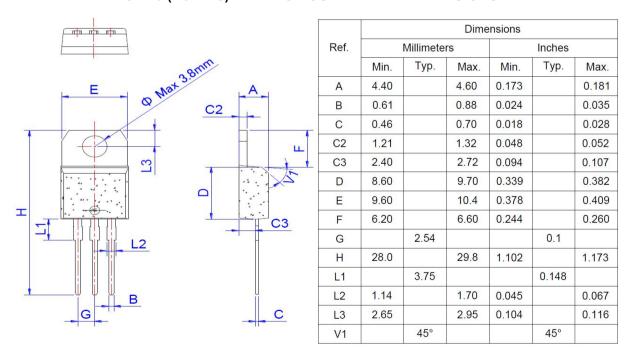
BTA12-XY BTB12-XY

X = 600: VDRM/VRRM \geq 600 **Y** = BW: $I_{GT1-3} \leq$ 50mA

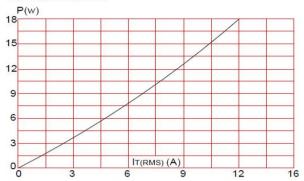
= 800: VDRM/VRRM ≥ 800 = CW: $I_{GT1-3} \le 35mA$ = 1200: VDRM/VRRM ≥ 1200 = SW: $I_{GT1-3} \le 10mA$

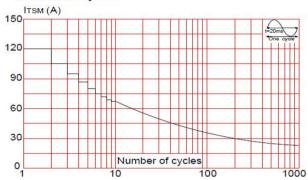

= TW: I_{GT1-3} ≤ 5mA

= B: $I_{GT1-3} \le 50 \text{mA}$ $I_{GT4} \le 70 \text{mA}$

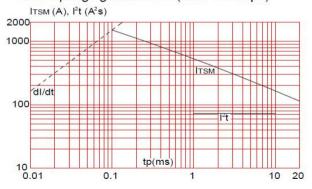

= C: I_{GT1-3}≤25mA I_{GT4}≤50mA

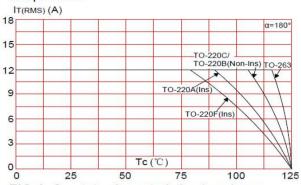
TO-220 (Ins) PACKAGE OUTLINE AND DIMENSIONS

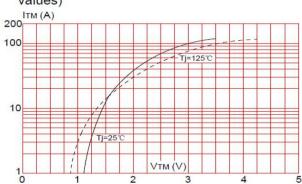

TO-220 (Non-Ins) PACKAGE OUTLINE AND DIMENSIONS



CHARACTERISTIC CURVES


FIG.1 Maximum power dissipation versus RMS on-state current


FIG.3: Surge peak on-state current versus number of cycles


FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I^2t (dI/dt < 50A/ μ s)

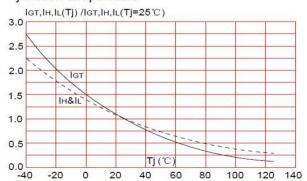

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

DISCLAIMER

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of
Continental Device India Pvt. Limited
C-120 Naraina Industrial Area, New Delhi 110 028, India.
Telephone + 91-11-2579 6150, 4141 1112 Fax + 91-11-2579 5290, 4141 1119
email@cdil.com www.cdil.com
CIN No. U32109DL1964PLC004291